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Abstract—Although the magic square is a historical and universal
study, its progress has been limited, to numeric games, which is
closer to digital games or word games, and lacks the connection
with mainstream mathematics. Recently, its study has extended from
exciting mathematical games to various novel applications, such as
image encryption, decryption processing, watermarking solutions,
and student group learning problems, or different engineering appli-
cations. In terms of employment in information security, it is the blue
ocean that requires more innovative research to enrich its content. In
this study, we engage the magic square and Goldbach’s Conjecture
to develop an innovative method to search prime numbers.

Keywords—Magic Square, Mutation, Goldbach’s Conjecture, Au-
thenticated Communication, Cybersecurity

1. INTRODUCTION

The history of the magic square can be traced back to
ancient China 2000 years ago [1]. Later, it has been stretched
to Japan, India, the Middle East, and Latin Europe [2]–[6].
Despite its long history and widespread, its progress has
been limited to mathematic games, which is closer to digital
games or word games. It lacks the connection with mainstream
mathematics and theoretic disciplines [7], [8]. Recently, its
study has extended from exciting mathematical games to
various novel and pragmatic subjects, such as image encryp-
tion [9], [10], decryption processing [11], [12], watermarking
solutions [13], and student group learning issues [14], [15],
or different engineering applications [16]–[18]. Owning to the
features of the Magic Squares, it has been employed in an
information hiding scheme. Huang [19] applied magic square
to data hiding in 2007. Wen, Huang and Han used a sequential
magic square, reordered the exchanged data by the transposi-
tion square. Both transposition and substitution are performed
in the encryption and decryption processes in operation [20].
Sequentially, Shu [21] applied magic square to the pixel mod-
ification data hiding. Shen [22] and Liu et al. [23] implanted
magic square to a scrambling matrix such as a block, and
combined stream cipher to encrypt and decrypt the random-
access files. The advance of data hiding, such as robust and
secure data hiding techniques for telemedicine applications,
has enhanced the security development in connected health
care [24]–[29]. It is well known that an odd magic square
is easier to create than an even square. The question then
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becomes, can you use an odd magic square to produce an even
number. Liu has built up fundamental knowledge according
to the key points mentioned above to enrich the employment
of magic squares in the domain of information security [30].
This study based on the fundamental knowledge of magic
square [31]–[34], and further engages it with Goldbach’s
Conjecture to develop an innovative method of authenticated
communication. The structure of this paper is organized into
several sections. Section 1 introduces the brief history of
the magic square and the current development. Section 2
describes the properties of the magic square, mutation to the
magic square, and the relationship of Goldbach’s conjecture
with magic square. Section 3 describes the characteristics and
extension of the application of the magic square, which used
in encryption, decryption, and authentication for a network
environment. Finally, the conclusion is drawn in section 4.

2. ANALYSIS OF MAGIC SQUARE MUTATION

2.1. Related Works and Literature Review

In this paper, the author lists some literatures which discuss
the application of magic square in other fields, such as image
processing, data and information hiding, watermarking, infor-
mation security, and other application issues. Due to limited
conditions, this study lists parts of good contributions, but is
a little different then what is discussed in this article, please
see Table 1.

Table 1
RELATED L ITERATURES

Year Image Data Hiding Watermarking Other Application
2004 Abiyev et al. [16]
2007 Huang [19]
2009 Chang et al. [35]
2010 Wen [20] Ganapathy [34]
2011 Hsu [21] Hsu [21] Shen [22], Liu et al. [23]
2012 Zhang [36] Lee [37], Liu et al. [38]
2014 Channapragada [39] Duan [40]
2015 Duan [41]
2015 Liu [30], Liu et al. [42]
2016 Zhong et al. [43] Kurup et al. [24]
2016 Rao [32], [33]
2017 Sowmiya [31]
2018 Chia [44]
2019 Woll [45]
2020 Peng et al. [46]

2.2. Magic Square History

According to literature, the oldest magic square is a 3-order
magic square from ancient Chinese Lo-Shu. On the basis of
legend, Dayu governance flooding in the Yellow River and
Luo-Shui; he found a turtle’s rear engraved peculiar pattern in
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a standard 3-order magic square [47]–[50]. The magic square
is also known as “Jiugong calculation”, a total of nine blocks
because sum of row or column numbers are equivalent to this
matrix. In Japan, the magic square is also called as “Kyu Miya
San” [47], [48].

Figure 1. A 3-Order Magic Square in Turtl’s Rear [16].

Notations:
n: express an positive integer.
p: express an integer.
q: express an integer.
p1: express a prime.
mod: express the modulo operation.

2.3. Definition of Magic Square

If a matrix haven rows andn straights, and there haven
squared small squares, then this matrix is an n-order square;
if each column, each row and each diagonal digital numbers
are equal, its called a standard magic square (or normal magic
square) [49], [50]. How to check a magic square, we could
calculate the sum of each row, column or diagonal where the
formula is

n3 + n

2
, (1)

whereinn is a order for this magic square.
For example: A case of 3-order magic square, the sum of each
row, column or diagonal is3

3
+3

2
= 15.
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Figure 2. A Standard 3-order Magic Square.

2.4. Mutation of Magic Square

There are several common deformations to magic square:
the rigid deformation, the value-added deformation, the com-
plementary deformation, the tic-tac-toe exchange deformation,
the swastika deformation, the topological deformation, the
rotation deformation and so on variety way [47]. To deform an
odd or even magic square, those are different methods. In this
paper, we would like introduce a case of synthesis to 9-order
and 12-order magic square.

1) Odd Number of 9-Order Magic Square Synthesis
Method: To a n-order magic square can be sliced several p-
orders or q-orders where

n = p · q, n ≥ 3. (2)

Then thisn be factored two integersp andq. For example, a
9-order magic square can slit 9 parts 3-order magic square as
shown in Figure 3.

Figure 3. 9-Order Magic Square Cutting-Synthesis

The synthesis method of the type 3 ∗ 3
Step 1. The matrix cuts three parts, it could be sliced nine

medium blocks. The medium block also slice nine
small blocks. We called tic-tac-toe cutting. This
method looks like a Chinese word ’well’. that’s why
we named.

Step 2. For medium blocks, we marked 1-9 numbers to each
blank according to 3-order style.

Step 3. There are 81 small blocks, we sequence fill out all
numbers.

Step 4. Repeat step 3 until all small blocks is not empty.
Step 5. Check the sum of rows, columns and diagonals. If

its not hold, repeat step 3, otherwise terminal these
stages.

2) Even number of 12-order magic square Synthesis
Method: A n-order magic square wheren = 12 can be divided
two typesn = 4 ·3 or n = 3 ·4, the matrix average slice three
or four parts.
The synthesis method of type 4 ∗ 3
Step 1. A 12-order magic square average cut four equal parts,

there are 16 medium blocks.
Step 2. Each medium blocks could be sliced 9 small blocks.

So, there are totally 144 small blocks in this matrix.
Step 3. The medium blocks sequence marked 1-16 numbers,

and small blocks sequence 1-9 numbers. We sequence
fill out all numbers.

Step 4. Repeat step 3 until 144 small blocks is not empty.
Step 5. Check the sum of rows, columns and diagonals. If

its not hold, repeat step 3, otherwise terminal these
stages.

The result show in Figure 4.
The synthesis method of the type 3 ∗ 4
Step 1. A 12-order magic square average cut three equal parts,

there are 9 medium blocks.
Step 2. Each medium blocks could be sliced 16 small blocks.

So, there are totally 144 small blocks in this matrix.
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Figure 4. 12-Order Magic Square slicing in4 ∗ 3

Step 3. The medium blocks sequence marked 1-9 numbers,
and small blocks sequence 1-16 numbers. We se-
quence fill out all numbers.

Step 4. Repeat step 3 until 144 small blocks is not empty.
Step 5. Check the sum of rows, columns and diagonals. If

its not hold, repeat step 3, otherwise terminal these
stages.

The result show in Figure 5.

Figure 5. 12-Order Magic Square slicing in 3*4

The synthesis method of the type 3 ∗ 5
Step 1. A 15-order magic square average cut three equal parts,

there are 9 medium blocks.
Step 2. Each medium blocks could be sliced 25 small blocks.

So, there are totally 225 small blocks in this matrix.
Step 3. The medium blocks sequence marked 1-9 numbers,

and small blocks sequence 1-25 numbers. We se-
quence fill out all numbers.

Step 4. Repeat step 3 until 225 small blocks is not empty.
Step 5. Check the sum of rows, columns and diagonals. If

its not hold, repeat step 3, otherwise terminal these
stages.

The result show in Figure 6.
3) Note synthesis:As well known, the smallest known

magic square is a 3-order magic square, if we want to construct
more than a 9-order magic square by synthesis and cutting
method, the minimum requirement is a 3-order. Why not use
2-order? Because the 2-order magic square does not exist.

Proposition 1. Assumption a two-order magic square shows
in Figure 7, The parametersa, b, c, d are not equality positive
integers.

Proof: We assume the Figure 7 is a 2-order magic square.

Figure 6. 15-Order Magic Square slicing in 3*5

Figure 7. 15-Order Magic Square slicing in 5*3

We therefore know

a+ b = b+ d = a+ c = b+ d = a+ d = b+ c (3)

, and obtain
a = b = c = d. (4)

However, in definition of magic square, the necessary condi-
tion is

a 6= b 6= b 6= d. (5)

Thus, it contradicts the assumption.

Proposition 2. Assumen is a positive even (integer) number,
if n can be factored by3 or 4, it then could reconstruct from
3-order or 4-order magic square.

Proof: If 3|n then n ≡ 0 (mod 3). If 4|n then n ≡ 0
(mod 4).
There are two situations in following:
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Figure 8. 18-Order Magic Square slicing in 3*6
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Figure 9. 18-Order Magic Square slicing in 6*3

a b

c d

Figure 10. A Two Dimensions Matrix

(n) ⇐⇒
{

≡ 1 (mod 3)
≡ 2 (mod 4),

(6)

or

(n) ⇐⇒
{

≡ 2 (mod 3)
≡ 2 (mod 4).

(7)

We obtain thisn to match2p1|n wherep1 is prime. Thus, the
primep1 can not factoring by any integer. And2p1 is an even
number, it does not exist any factors of3 or 4.

If n is an integer, there are six types:{0 − 0}, {2 − 2},
{1− 0}, {0− 2}, {2− 0} and{1− 2}, we obtained this result
from Table 2. If and only ifp1 is a prime wheren

2
= p1 and

n ≥ 7, there are filtered three cases, namely{2− 2}, {0− 2}
and{1 − 2} forms. However the form of{0 − 2} is divided

Table 2
AN INTEGER CHANGING SITUATIONS

integern
mod

3 4 note

0 0 0
1 1 1
2 2 2
3 0 3
4 1 0
5 2 1
6 0 2
7 1 3
8 2 0
9 0 1
10 1 2

√

11 2 3
12 0 0

√

13 1 1
14 2 2

√

15 0 3
16 1 0

√

17 2 1
18 0 2

√

19 1 3
20 2 0

√

21 0 1
22 1 2

√

23 2 3
24 0 0
25 1 1
26 2 2

√

27 0 3
28 1 0

by 3, thenn is not a prime. Otherwise, it is a contradiction.
Thus, two forms{2−2} or {1−2} probably be a prime where
n
2
= p.

Table 3
REDUCE EXPRESSION

n n mod 3 n mod 4 n
2

12 0 0 6
14 2 2 7
16 1 0 8
18 0 2 9
20 2 0 10
22 1 2 11

n

2







Case 1: this is an even number.
Case 2: this is an odd number.
Case 3: this is a float number.

(8)

We rewrite the Equation (8) as follow:
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n

2















Situation 1: 4k
2

, this is an even number.
Situation 2: 4k+1

2
, this is a float number.

Situation 3: 4k+2

2
, this is an odd number.

Situation 4: 4k+3

2
, this is a float number.

(9)

According to Bertrand, he assumes that ifn > 3, there is
always at least one primep betweenn and2n− 2 in 1845. In
other words, ifn > 1, then there is always at least one prime
p such thatn < p1 < 2n. This postulation is also named the
Bertrand-Chebyshev theorem or Chebyshev’s theorem. As it
was proven by Chebyshev using non-elementary methods in
1850 [51], [52].

Theorem 1 (Bertrand-Chebyshev Theorem). For any real
numbern, wheren ≥ 1, there always exists at least a prime
between the intervaln and 2n.

Proof: We suppose that
(

2n

n

)

≤
∏

p≤
√
2n

P r
∏

√
2n<p≤ 3

2
n

P
∏

m<p≤2n

P

≤
∏

p≤
√
n

(2n)
∏

√
2n<p≤m

P
∏

m<p<2m

P. (10)

For eachn, where1 ≤ n < 4010, such as2, 3, 5, 7, 13, 23,
43, 83, 163, 317, 631, 1259, 2503, . . ., 3967, 3989, 4001,
4003, 4007.
We choose a small primep1, and another greater thann say
p′1. The relationship is as follows:

p1 ≤ n ≤ p′1 ≤ 2p1 ≤ 2n. (11)

Thus, this finishes the proof.

Goldbach
Prime Magic Square

Conjecture

Figure 11. A relationship among Goldbach conjecture, prime, and the magic
square

We get following relationship as:

Goldbach′s conjecture ∩ prime ∩ magic square. (12)

3. ENCRYPTION AND DECRYPTION PRINCIPLE AND ITS

AUTHENTICATION MECHANISM

3.1. Magic square characteristics-“greater than 1 rule”

Figure 12. (a) 3-Order Magic Square. (b) 4-Order Magic Square. (c) 5-Order
Magic Square.

3-Order magic square features: An example for 3*3 magic
square, the sum of two diagonal corners are (8+2)=10 and
(6+4=10), we know ten is greater 1 than nine.
4-Order magic square features: An example for 4*4 magic
square, the sum of two diagonal corners are (16+1)=17 and
(13+4)=17, we know seventeen is greater 1 than sixteen.
5-Order magic square features: An example for 5*5 magic
square, the sum of two diagonal corners are (17+9)=26 and
(15+11)=26, we know twenty-six is greater 1 than twenty-five.

Figure 13. (a) 6-Order Magic Square. (b) 7-Order Magic Square. (c) 8-Order
Magic Square.

6-Order magic square features: For 6*6 magic square,
the sum of two diagonal corners number are (6+31)=37 and
(1+36)=37, we know thirty-seven is greater 1 than thirty-six.
7-Order magic square features: An example for 7*7 magic
square, the sum of two diagonal corners are (30+20)=50 and
(28+22)=50, we know fifty is greater 1 than forty-nine.
8-Order magic square features: An example for 8*8 magic
square, the sum of two diagonal corners are (64+1)=65 and
(57+8)=65, we know sixty-five is greater 1 than sixty-four.
9-Order magic square features: An example for 9*9 magic
square, the sum of two diagonal corners are (71+11)=82 and
(51+31)=82, we know sixty-five is greater 1 than eighty-two.
12-Order magic square features: An example for
12*12 magic square, the sum of two diagonal corners
are (143+2)=145 and (114+31)=145, we know 145 is greater
1 than 144.
12-Order magic square features: An example for
12*12 magic square, the sum of two diagonal corners
are (128+17)=145 and (93+52)=145, we know 145 is greater
1 than 144.
15-Order magic square features: An example for
15*15 magic square, the sum of two diagonal corners
are (192+34)=226 and (140+86)=226, we know 225 is greater
1 than 226.
15-Order magic square features: An example for
15*15 magic square, the sum of two diagonal corners
are (152+74)=226 and (132+94)=226, we know 225 is greater
1 than 226.
18-Order magic square features: An example for
18*18 magic square, the sum of two diagonal corners
are (258+67)=325 and (181+144)=325, we know 325 is
greater 1 than 324.
18-Order magic square features: An example for
18*18 magic square, the sum of two diagonal corners
are (287+56)=343 and (121+186)=307, then (343+307)=650,
and (650/2)= 325. we know 325 is greater 1 than 324.
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3.2. Authentication mechanism with the characteristics of the
magic square

Alice Bob

ciphertext, key, plaintext

Sender Receiver

Figure 14. Sender-Receiver Single Channel Relationship.

In basic situation, if sender wants to communicate with
receiver, he must send three parameters{cipher, key, and
plaintext} on an insecure signal channel. To receiver, when he
received these parameters from sender. He can decrypt cipher-
text to plaintext through by key. For symmetric cryptosystem
mechanism. The encryption key is same with decryption
key. To asymmetric cryptosystem, it is not the same key to
encryption and decryption. How does receiver authenticate
sender? Receiver decrypted ciphertext and then compared with
original plaintext, if it is hold, he rather believes sender is a
right person, otherwise the sender is an adversary. (see Figure
14)

Alice Bob

{ciphertext, key, plaintext}

Sender Receiver

{seeds}

Secure Channel/VPN

Figure 15. Sender-Received Two Channel Relationship.

If sender and receiver preshare a magic square algorithm.
Sender send the ciphertext by common channel and seeds by
secure channel (or Virtual Private Network, VPN) to receiver.
In the mean time, sender does not send the plaintext to receiver.
Receiver then can decrypt the plaintext by himself.
For example: The sender transmitted seeds{7, 30, 28, 22, 20}
via a secure channel seed and ciphertext to the receiver. When
receiver catch these parameters, he knows to generate a 7-order
magic square, and then compare four corners{30, 28, 22, 20}.
If it is hold, this magic square is correct, otherwise it is
wrong. Receiver can not recover ciphertext from a wrong
magic square. (see Figure 15)

3.3. Security Analysis

The 3-order magic square is unique, the 4-order has880
variants, the 5-order owns275305224 varieties, the 6-order
calculated about1.775399 · 1019, and 10-order estimated
2.4149 · 10110 combinations. Such proof of permutations and
combinations, be introduced in [50].
Open Problems:

1) Does “greater 1 rule” suit to most parts of magic square,
how many magic square did not match for this rule? There is
not any reference to discuss it.
2) There are so many articles to discuss how to generate a
odd magic square, but fewer discuss how fast generate an even
magic square.
3) Does magic square have widely application? Apply where?
It is still a pending study.

4. CONCLUSION

According to the literature review, the magic square has
shifted from mathematic games to various applications and
theoretical mathematics analysis. This study further discusses
its usage in cybersecurity authentication and the similarity with
Goldbach conjecture to explore its value both in practice and
theory. The employment of the magic square to encryption
and decryption provides various possibilities for the block
cipher. The sender still transmits the plaintext, key, and
ciphertext to the receiver who can authenticate each other.
In the method proposed in this study, the sender just needs
to support ciphertext and seeds only, no need to transmit
plaintext. The receiver can easily generate a magic square by
himself and then use this matrix to encrypt/decrypt source
messages. There are two strengths in this method: 1) Reduce
the transmitting performance. 2) Against the known-plaintext
attack where there is no plaintext and key in progress. To sum
up, this study contributes to the knowledge of authenticated
communication by proposing innovative methods based on
magic square and Goldbach’s conjecture. A variety of research,
such as cybersecurity, and cryptography, can be developed
based on the foundation of this study.
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